Auxiliary Information
Candidate: James T. Battle

Sample of Original Work

Two years ago | was given the task of designing a DRAM controller fora 16.6 MHz 68000 microproces-
sor. Ifeltthatitwould be possible to use ordinary 120ns dynamic RAM (DRAM) chips and achieve 1
wait-state (w.s.) performance. Onthe way to a solution, | developed a technique for systematically gener-
ating a synchronous state machine which operates at twice the system clock rate. Thisis done by allowing
the state machine to make transitions on both positive-going and negative-going clock edges. This means
that some state bits can change only on positive clock edges, and the other bits on negative edges. Anothe
constraintwas that states which were adjacentin time must be adjacent in the state space. This allows
glitch-free decoding required to control the DRAMs. Advantages of this technique are a simplified clock
distribution scheme, no clock skew problems as with a multi-frequency clock, and a "tighter" design than an
ad-hoc solution. Thistechnique could be generalized to a multiphase clocking scheme.

Toexplaintheidea, | will describe one loop of the DRAM controller state graph, the refresh cycle. All
DRAM chips need a periodic access sequence to maintain the contents of its memory. Thisis performedin
thisinstance by asserting the "CAS*" signal, waiting, asserting the "RAS*" signal, waiting, releasing "RAS*",
waiting, releasing "CAS*", and waiting a precharge period. The exact duration of the waitisn't critical, but it
must meet a minimum specified by the maker of the DRAM. The state graph would look something like

this:

(A)
(1clock) (E) (B) (1/2clock)

cas

cas (1/2 clock) (2 clocks) ras,cas

In actually implementing the graph, each logical state is implemented as one or more actual states. Thisis
because actual states have no knowledge of time; passage oftime is represented by changing state. For
instance, ifalogical state persists for 1/2 clock period, there is only one way to implement this. Ifalogical
state persists for one clock period, there are two ways to implement this:

+ + MENG N AN
S B—@®
(1clock) (1/2clock) (1/2clock)

For 1 1/2 clocks, there are three ways, for 2 clocks there are five ways. When turning alogical state
diagraminto an actual state diagram, there are many degrees of freedom in the implementation. There were
two constraints that limited the choices so only afew implementations were valid. The first constraintis that
inagiven loop ofthe graph, there must be an even number of positive edge transitions and an even number

of negative edge transitions. Thisis because to complete a cycle inthe graph, the state bits mustreturnto
their starting value. Thus, each time a state bitchanges away fromits value in the starting state, it must late
make atransition back.

The other constraint was thatimposed by system requirements. States adjacentintime mustbe adjacentin
the state space to allow glitch-free decoding.

Some ofthe design processis trial and error. Knowing how many state bits to assign for positive edges and
negative edges to allow for a conflict-free solution and choosing which sequence of actual states to imple-
mentalogical state require experimentation.

I modified the usual technique of using Karnaugh maps to make the bit assignment for the states. | arranged
the maps to that horizontal motions on the graph correspond to transitions on positive clock edges, and
vertical motions negative edges. This graphical technique makes generating assignments and detecting
conflicts easier, and helps suggest how to fixany problems. Asimple exampleis:

am (1/27) (1/27) (1/27T)

(1/27T) (1/27T)
A|B A|B
C AlC
C->Atransitionisillegal OK

since both bits change atonce

After an hour's work, the solution was to use two bits which were clocked on positive edges, and two bits
which were clocked on negative edges. Forthe part of the graph in exposition, this was the solution:

ras,cas
Note: firsttwo state
bits change on positive ras,cas
edges and the second two

change on negative edges

ras,cas

The graph of the state adjacency looks like this:

00 01 11 10 positive state bits

00| | Fl G
o1l A|B|C
11 D
10 =

negative state bits

