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Sample of Original Work

Two years ago I was given the task of designing a DRAM controller for a 16.6 MHz 68000 microproces-
sor.  I felt that it would be possible to use ordinary 120ns dynamic RAM (DRAM) chips and achieve 1
wait-state (w.s.) performance.  On the way to a solution, I developed a technique for systematically gener-
ating a synchronous state machine which operates at twice the system clock rate.  This is done by allowing
the state machine to make transitions on both positive-going and negative-going clock edges.  This means
that some state bits can change only on positive clock edges, and the other bits on negative edges.  Another
constraint was that states which were adjacent in time must be adjacent in the state space.  This allows
glitch-free decoding required to control the DRAMs.  Advantages of this technique are a simplified clock
distribution scheme, no clock skew problems as with a multi-frequency clock, and a "tighter" design than an
ad-hoc solution.  This technique could be generalized to a multiphase clocking scheme.

To explain the idea, I will describe one loop of the DRAM controller state graph, the refresh cycle.  All
DRAM chips need a periodic access sequence to maintain the contents of its memory.  This is performed in
this instance by asserting the "CAS*" signal, waiting, asserting the "RAS*" signal, waiting, releasing "RAS*",
waiting, releasing "CAS*", and waiting a precharge period.  The exact duration of the wait isn't critical, but it
must meet a minimum specified by the maker of the DRAM.  The state graph would look something like
this:

For 1 1/2 clocks, there are three ways, for 2 clocks there are five ways.  When turning a logical state
diagram into an actual state diagram, there are many degrees of freedom in the implementation.  There were
two constraints that limited the choices so only a few implementations were valid.  The first constraint is that
in a given loop of the graph, there must be an even number of positive edge transitions and an even number
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In actually implementing the graph, each logical state is implemented as one or more actual states.  This is
because actual states have no knowledge of time; passage of time is represented by changing state.  For
instance, if a logical state persists for 1/2 clock period, there is only one way to implement this.  If a logical
state persists for one clock period, there are two ways to implement this:
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of negative edge transitions.  This is because to complete a cycle in the graph, the state bits must return to
their starting value.  Thus, each time a state bit changes away from its value in the starting state, it must late
make a transition back.

The other constraint was that imposed by system requirements.  States adjacent in time must be adjacent in
the state space to allow glitch-free decoding.

Some of the design process is trial and error.  Knowing how many state bits to assign for positive edges and
negative edges to allow for a conflict-free solution and choosing which sequence of actual states to imple-
ment a logical state require experimentation.

I modified the usual technique of using Karnaugh maps to make the bit assignment for the states.  I arranged
the maps to that horizontal motions on the graph correspond to transitions on positive clock edges, and
vertical motions negative edges.  This graphical technique makes generating assignments and detecting
conflicts easier, and helps suggest how to fix any problems.  A simple example is:

After an hour's work, the solution was to use two bits which were clocked on positive edges, and two bits
which were clocked on negative edges.  For the part of the graph in exposition, this was the solution:
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The graph of the state adjacency looks like this:
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